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Reactive turbulent flow in low-dimensional, disordered media
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We analyze the reactio’s+A— andA+B—J occurring in a model of turbulent flow in two dimen-
sions. We find the reactant concentrations at long times, using a field-theoretic renormalization-group analysis.
We find a variety of interesting behavior, including, in the presence of potential disorder, decay rates faster
than that for well-mixed reaction§S1063-651X98)10609-§

PACS numbefs): 47.70.Fw, 82.20.Mj, 05.46;j

[. INTRODUCTION bulent transport. Our results should not be sensitive to this
assumption since the physical processes that appear to domi-
The behavior of chemical reactions in turbulent flow de-nate the long-time kinetics depend only on the overall trans-
termines how certain types of chemical reactors functionport properties of the fluid. In support of the generality of our
how combustion occurs in enginesy how smog is produced iﬁeSU'tS, we note that Deering and West have used mean-field
the atmospherd1], and how certain types of planktonic theory to analyze the reactioM+B—(J in a time-
predators feed in the oced@]. Reactive turbulent flow is dependent, but spatially uncorrelated, model of isotropic tur-
usually analyzed by continuum reaction/transport equationgulence. Where mean-field theory is expected to work
for the reactant§l,3]. We now know, however, that the up- (where the renormalized reaction rate does not enter the pre-
per critical dimension in which such mean-field equationsdiction for the long-time reactant concentratidheir results
fail is two [4—7]. We provide here a renormalization-group, 8gree with ours.
field-theoretic treatment of reactive turbulent flow in two di- I this article we use a field-theoretic approach to analyze
mensions. reaction kinetics in a model of turbulent fluid flow. A defi-
We consider a low concentration of reactants immersed ”ﬁlltlon of the fluid flow and the reaction kinetics is given in
an isotropic, turbulent fluid flow. The interplay of reaction, Sec. Il. The reactive turbulence problem is mapped to a field
turbulent mixing, and trapping by disorder will be shown to theory that is convenient for analySiS in Sec. Ill. The |Ong-
lead to unusual kinetics at long times. So as to access tHéme behavior of theA+A—(J reaction is derived by a
most interesting regime, we will consider a two-dimensionalrénormalization group analysis in Sec. IV. The long-time
system. At low reactant concentrations, the dynamics of th&ehavior of theA+B—(J reaction is derived in a similar
fluid will not be affected by the kinetics of the reaction. As fashion in Sec. V. We conclude with a comparison to experi-
such, the effect of the turbulence is simply to advect and tgnental results in Sec. VI.
mix the reactants.
Our intention is not to derive a theory of turbulence but Il. DEFINITION OF REACTIVE TURBULENT FLOW
rather to derive a theory of bimolecular kinetics in the pres- . . .
ence of isotropic turbulence and potential disorder. We there- In our formplat!on, an |§olated reactant undgrgoes bllased
fore employ the same statistical theory of turbulence conven'ra’rown."”ln motion in the fluid streamlines, reacting at a given
tionally used to study turbulent transport of passive scalar ate W'th other nearby reactants. In the ak_)sence ofa reaction,
[8,9]. For a review of this approach sgE0]. We assume, in e m_ot|on of the particles can be described by a Langevin
particular, that the turbulent fluid that advects the reactant§auation
can be modeled as a quenched, random, Gaussian velocity dx:
field with the correct statistics. While the fluid velocity —=BDF(x;)+ 7(t), @
streamlines produced by this conventional approach do not dt

satisfy _the Navier-Stokes equations, the correct ranspoff o e the inverse temperature is given y 1/(ksT), and
properties of the reactants are captured. The correct Kolmoqj is the diffusivity. Here the position of particIeB Xi’ un-

orov energy cascade and Richardson separation laws, for X

. . ; iergoes advection due to forces from the fluid flow and dif-
ample, are produced. One can imagine using a more detallq(

; . . Usion due to forces from the random, thermal motion of the
model of the fluid mechanics. Avellaneda and Majda havefluid The random, thermal noise has a correlation deter-
for example, used statistical flow fields that depend on bo”?ninéd by the diffuéion coefficient
space and time to model turbulent transgdt—13. On an
even more detailed level, one could use statistical flow fields (9, (D7, (t))=2D5,,8(t—t"). )
that satisfy the Navier-Stokes equations. Renormalization- e e
group theories for flow fields of this type have been derivedwe choose the forces coming from the fluid stream lines so
by Forster, Nelson, and Stephgb4] and later by Yakhot that they mimic turbulence. Defining
and co-workerg15-17. We settle for the simplest descrip-

tion of the fluid mechanics that captures the essence of tur- (F#(X)F,,(x’)>=GM(x—x’), 3
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we choose spacing implies a cutoff in Fourier space af=2x/h. A
reaction occurs between two particles, at a dggéh?, only
A - - hen they are on the same lattice site. The diffusion and
G (K) = Xas(K) (8, k2= K k) + xou(Kk,k,, (4 Whent ; \
u(K) =X (K) (3, wko) T xukIRuky s @) S vection occur on this same lattice.
where the Fourier transform of the correlation function is

pal _ d . . .

Crun(k)=Jd*) G (x)expgk-x) in d dimensions. Here lll. FIELD-THEORETIC REPRESENTATION
X 44(K) is the correlation function of the stream function that
gives rise to the turbulent fluid flow ang, (k) is the cor-
relation function of a quenched, random potentigl),
which we have included for generality. To mimic turbulence

The quantity of interest is the long-time concentration of
the reactants. The presence of the quenched fluid stream lines
and the quenched, external potential makes direct analysis of
the dynamics rather difficult. Perturbation theory fails due to

we choose singularities in the forces at small We therefore map the
above description onto a field theory and analyze the field
- N theory using renormalization-group theory. We assume that
Xgo(K) = 2y’ Xuu(K) = K2y ) the concentration of reactants is initially Poisson, with aver-
age densityn,.
Isotropic turbulence is modeled lyy=28/3 andy=0. A field theory is derived by identifying a master equation,
Of course, we are interested in reactive, turbulent flowwriting the master equation in terms of creation and annihi-
We consider two different reactions lation operators, and using the coherent state representation
[4,18]. The random potential is incorporated with the replica
A+A—D (6) trick [9], usingN replicas of the original problem. For reac-
Xo tion (6), the concentration of\ at timet, averaged over the
initial conditions, is given by
and
A+B—(. () ca(x,t)= lim (a(x,t)), )
Ao N—O0

Here \ is the conventional reaction rate. We place our re-
actants on a square lattice, of lattice spadingrhis lattice ~ where the average is taken with respect to ex(y),

_ N _
sAA=J dde:dtaa(x,t)[at—DVZJr S(t)]a(x.t) + 7°J dde:dt[zaa(x,t)ai(x,t)+Z§(x,t)a§(x,t)]

— ’D? . ~ . ~
—n [ om0~ [dudt [ 2wtttk ke ()R, e ) (K 1), e t)
Kykokaky

X[Ky- (Kg+Ko)Ka- (KatKg) xuu([Ke+Kal) Ky X KokaX Kax gg([Ka+Ka|)]. (9)

Summation is implied over replica indices. The notatignstands forfd%/(2)9. The upper time limit in the action is
arbitrary as long at=t. We do not dwell on the construction of this field theory. It differs from that for reaction in a random
potential field only by the inclusion of the random streamline tefis

For distinct reactants, i.e., for reactién), a field theory can also be derived. The relevant action has the form

tf — tf _
SAB=f o|dxf0 dt a,(x,t)[d,—DV?+ 5(t)]aa(x,t)+f ddxfo dt b, (x,t)[d;—DV2+ 8(t)]b(x,1)

+x0f ddxf:dt[ga(x,t)aa(x,t)ba(x,t)+Ea(x,t)aa(x,t)ba(x,t)+§a(x,t)aa(x,t)5a(x,t)ba(x,t)]
2D2

2

_nof d%[a,(x,0) +b,(x,0]~ f dtldtsz . (27m)8(ky+ Ko+ Ka+Kg)[Ag, (Kp 1), (Kz,ty)
172R3%4

—b, (k1,t)b, (Kp,t)][A0,(Ks,t2)an, (Ka,to) = by (Kg,ta)b, (Ka o) Ky - (KytKo)Ks: (Ks+Ka) xyu([Ky ko))

+ kX koksX k4;(¢¢(|k1+ ka1 (10
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This action also differs from that for reaction in a randomwhere we recognize the mean-field result with effective re-
potential field only by the inclusion of the random streamaction rate * =1/27Dy)+ 1/\y. The mean-square dis-
line terms[7]. The concentrations averaged over initial con-placement is given byr?(t))~4Dt(t/to)Y*™Y), which is
ditions are given by an exact lawf10] in the absence of a reaction. As expected,
turbulence leads to the well-mixed, mean-field result for the
calx,t)=lim(a(x,t)), ca(x,t)=lim(b(x,t)), (11)  concentration decay, with an effective reaction rate
N—0 N—0 <\go. We have determined the effective reaction rate as an

where the average on the right-hand side is taken with re@xpansion in the parametgr which measures the degree of

spect to exptSyg). So as to reach the most interesting scal-m'x'(r;g Olf t?ﬁ ﬂlfj.'d' dFor §I;T1p|l|CIty herehand_btelow,t.we thhave
ing limit, we have taken the initial average densities to be th sed only the fixed point value @ when integrating the

_ _ i low equation fora(l).
same,ca(x,0)=cg(X,0)=ny. For simplicity, we have also . ;
assumeAd( ec?ual Béliffu)sivit?es of the ptwoyspecieas -D What will happen in the presence of a quenched, random
=D. Note that theA andB particles experience anAidenEcal potential? We have seen that fluid streamlines increase the

force due to the fluid streamlines but an opposite force due tg"xInNg of the reactants. We have previously shown that a

the quenched, external potential quenched, random potential in the absence of turbulence
' ' leads to a slowing down of the reacti¢f]. This occurs

because the reaction becomes diffusion limited at long times
IV. THE A+A—( REACTION and the random potential leads to subdiffusion. We might,

Let us first consider how turbulence will affect thie  therefore, expect that the reactant concentration )@r0

+A—J reaction in the absence of potential disorder. With-Will be lower than that for the case of=0 for arbitraryo.

out turbulent mixing, this reaction is diffusion limited. The In fact, a subtle trapping effect due to the potential leads to

~In(t/ty)/(8wDt), with ty~h?/D [4]. This decay is slower Mmediate values of. .

than thec,(t)~1/(k*t) that would be predicted by simple  The flow equations that result in the presence of the ran-

mean-field kinetics for a well-mixed reaction with effective d0m potential are

. * . :
reaction ratek* . Turbulence mixes the reactants, tending to dinn, , dink

eliminate the transport limitation on the reaction rate. As we , ——=—5—+39,—9,,
will see, turbulence will cause the reactant concentration to dl di 47D
follow the mean-field result, with™* <X\,.
We analyze the field theor®) via renormalization-group ding, ding,
o : , y—29,, y—29,, (15
theory. The flow equations in two dimensions, to one loop dl dl
order, are . . . .
where the dimensionless coupling constants are given by
dinn, din\ A ding 9,=yB*A~YI(4m) andg,= o B?A Y/(4m). The dynamical
T T A T AL exponent is given by
(12 z=2+9,-0,. (16)

where the dimensionless coupling constant is givengby

Th fl ti lead to fixed points for th li
=oB%AY/(4m). The dynamical exponent is given by ese “low equations ‘ead 10 Txsd points Tor the coupings

g, =Yy/2 andg} =(y/o)y/2. The flow diagram for the cou-
z=2—g. (13) plings is shown in Fig. 1. Including higher-order diagrams in
the flow equation leads to a bending of the fixed line, more
We see that the flow equations lead to a nonzero fixed poiritrongly for largery/o, with the coupling flows remaining
for the couplingg* =y/2. This fixed point is probably exact linear[19]. _ _ .
if we assume that the reaction does not affect the transport The matching to determine the asymptotic concentrations
properties6,10. leads to two regimes. For weak potential disorder with 3
We determine the long-time decay from the flow equa-<o. there is no finite fixed point value fox(l), and we
tions via matching to short-time perturbation thepgy. The  have
flow equations are integrated to a time such th@dt)
=texp:—fgz(l)dl]=to. At short times, we find the mean- c
square displacement of an unreactive particle from
(r?(t(1*),1*))=4Dt(I*) and the concentration of reactants
from ca(t(1*),1*)=111/ng(1*)+N(I*)t(1*)]. The long- (3y<o). (17
time asymptotic values are given by scaling?(t))
=e2"(r2(t(1*),1*)) and ca(t)=e 2 ca(t(1*),1*). This
procedure gives

1 . 1
47wD(gh—3g%) Mo

t

1( t ) -2g7/(2+9},~gy)

For strong potential disorder withy3> ¢, there is a finite
fixed point valuen* =47D(3g} —g}), and we have

(3y>0). (18
to

1 1\1 1 (t)<g*;g§>/<2+g’;gf,>
~ Z1Z (y= ca(t)~
ca(t) (277Dy+)\0)t (y=0), (14) (D) "
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1.0 ‘ ‘ deep energy wells is significantly higher than the average
density. The reaction rate in these regions is, therefore,
08 | ] higher than would be predicted by mean-field theory based

upon the average density. The turbulent mixing flows con-
tinuously replenish the reactants in these wells as the reac-
06 | 1 tion occurs. In this way, a reaction rate significantly higher
& than that for a perfectly well-mixed system arises.
04 |
V. THE A+B— REACTION

02 | We now turn to theA+ B—J reaction. In this case, thke

andB reactants are attracted to different regions of space by

0.0 : : . ‘ the external potential, and so there is no mechanism for su-
00 02 04 06 0.8 1.0 perfast reaction.

g, The flow equations for this case are

FIG. 1. Flow diagram for the dimensionless couplings in the
A+A—(J reaction. The fixed line is shown in bold fg=1. The dinng - dini - A —(g,+9,)
fixed point reaction rate is finite on the solid part of the fixed line dl ©oodl 47D vo=an
and vanishes on the dashed part of the fixed line.

ding, ding,,
The maximum rate of decay occurs foy3 o, in which ar Y729 g TV~ 29 (20)
case we have

The dynamical exponent is given by
In(t/tg)

~8atioyeptt | Br=0). (19 z=2+9,-0,. 21)

ca(t)

. o We first consider the case of no external potential. If, in
In all cases, the mean-square displacement is given byqgition, there is no turbulent flow, thé and B reactants
(r?(t))~4Dt(t/ty) (9 ~9)/(2795%0,), segregate into distinct regions in space. This segregation
Examining the asymptotic decay laws7)—(19), we see leads to a severely diffusion-limited reaction at long times.
that a small amount of potential disorder added to the turbuThe concentration decays as ca(t)=cg(t)
lent fluid mixing leads to arncreasedrate of reaction. As ~[ny/(872Dt)]*? [7]. Allowing for turbulent mixing, we
the potential disorder is increased, eventually the rate of reexpect the reaction to become more well mixed, with less
action decreases. The exponent of the concentration decaysegregation and faster reaction. In fact, there will be a tran-
shown in Fig. 2. This result is rigorously valid for small  sition to a region that is reaction limited for strong enough
and finite values ofy and o. For finite values ofy, we  mixing flows.
expect qualitatively similar behavior. We perform the matching to determine the asymptotic
How can potential disorder, which tends to slow down thedecay. In the transport-limited regime, we usgt(1*),1*)
diffusing reactants, lead to an increased rate of reaction? The[ny(1*)/(8=?Dt(1*))]*2 In the reaction-limited regime,
potential disorder creates regions of low energy, which tendve usec,(t(1*),1*)=111/ng(I*)+N(I*)t(1*)], as before.
to attract reactants. The local density of reactants in these For weak fluid mixing the reaction will be in the
transport-limited regime, whereas for strong fluid mixing the

2.0 ‘ , . reaction will be in the reaction-limited regime. Specifically,
for weak mixing we have
15 o 1/2( t )_W(s_zy) (y<2.y=0)
5 calt)~ T Y=4Y).
" gw2Dt) \to y=ey
3 (22)
10! For strong mixing, we have
t ! + Ak >2,y=0 23
ca(t) m)\_of(y ,y=0). (23
0.5 ‘ - '
00 05 ;/'g 15 20 The exponent of this decay is shown in Fig. 3. Note that for

isotropic turbulence y(=8/3), the reaction is always in the
FIG. 2. Decay exponent for thé+A—(J reaction: c(t)  reaction-limited regime in two dimensions.
~consixt~®, The figure is shown foy=8/3, which mimics iso- Potential disorder will slow down the reaction both be-
tropic turbulence. cause reactants are attracted to different regions of space and
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FIG. 3. Decay exponent for th&+B—J reaction: ca(t) FIG. 4. Decay exponent for thé&+B— reaction: ca(t)
~consiXt™ ¢, The figure is shown foy=0. ~consXt™ ¢, The figure is shown foy=1.2. The reaction is trans-

port limited on the solid curve and reaction limited on the dashed
because the transport of reactants to each other is slowecurve. The curve is strictly valid only for smajl/o.
Our one-loop flow equations predict that in the transport-

limited regime interest. Reaction conditions of the type that we consider
could be realized in reactions between ionic species confined

no 112 £\ (9% —a5)/(a—2g% +2g%) tp two-dimensional fluid films that are sur.rou.ndgd by spa-

ca(t)~ (_) (g% +g*<1), tially addressable electrodes or media with ionic disorder
82Dt to 7 that isnot equilibrated. The electrodes or disordered media

(29 are necessary to generate a potential with the required, sin-

gular correlation function. The required isotropic turbulence

can be generated in the standard fashion. Fluid flows less

strong than isotropic turbulencg € 8/3) could be observed

in regions of developing turbulence.

1/ t\293/(2-g5+9}) A recent experiment by Paireau and Tabeling has seen an

—( ) enhancement of the effective reaction rate between ions in a
chaotically mixed, two-dimensional fluid with attractors

[20]. In this experiment only the prefactor to the reactivity

was enhanced. The decay exponent remained at unity be-

The exponent of this decay is shown in Fig. 4. The exponen‘fause the disorder was technically irrelevant. We are un-

: : : ; : f experiments, to date, that can test our predictions
is valid for arbitraryy and smally/o. The effective reaction aware ot T '
rate in Eq.(25), however, may contain corrections higher for technically relevant disorder, Eqel7)—(19), (24), and

order iny. (25).

where, as before, we hags =y/2 andg}=(y/o)y/2. In
the reaction-limited regime we have

to

(1<g;+95<2). (29
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