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Reactive turbulent flow in low-dimensional, disordered media
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We analyze the reactionsA1A→B andA1B→B occurring in a model of turbulent flow in two dimen-
sions. We find the reactant concentrations at long times, using a field-theoretic renormalization-group analysis.
We find a variety of interesting behavior, including, in the presence of potential disorder, decay rates faster
than that for well-mixed reactions.@S1063-651X~98!10609-8#

PACS number~s!: 47.70.Fw, 82.20.Mj, 05.40.1j
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I. INTRODUCTION

The behavior of chemical reactions in turbulent flow d
termines how certain types of chemical reactors functi
how combustion occurs in engines, how smog is produce
the atmosphere@1#, and how certain types of planktoni
predators feed in the ocean@2#. Reactive turbulent flow is
usually analyzed by continuum reaction/transport equati
for the reactants@1,3#. We now know, however, that the up
per critical dimension in which such mean-field equatio
fail is two @4–7#. We provide here a renormalization-grou
field-theoretic treatment of reactive turbulent flow in two d
mensions.

We consider a low concentration of reactants immerse
an isotropic, turbulent fluid flow. The interplay of reactio
turbulent mixing, and trapping by disorder will be shown
lead to unusual kinetics at long times. So as to access
most interesting regime, we will consider a two-dimensio
system. At low reactant concentrations, the dynamics of
fluid will not be affected by the kinetics of the reaction. A
such, the effect of the turbulence is simply to advect and
mix the reactants.

Our intention is not to derive a theory of turbulence b
rather to derive a theory of bimolecular kinetics in the pr
ence of isotropic turbulence and potential disorder. We the
fore employ the same statistical theory of turbulence conv
tionally used to study turbulent transport of passive sca
@8,9#. For a review of this approach see@10#. We assume, in
particular, that the turbulent fluid that advects the reacta
can be modeled as a quenched, random, Gaussian vel
field with the correct statistics. While the fluid velocit
streamlines produced by this conventional approach do
satisfy the Navier-Stokes equations, the correct trans
properties of the reactants are captured. The correct Kolm
orov energy cascade and Richardson separation laws, fo
ample, are produced. One can imagine using a more det
model of the fluid mechanics. Avellaneda and Majda ha
for example, used statistical flow fields that depend on b
space and time to model turbulent transport@11–13#. On an
even more detailed level, one could use statistical flow fie
that satisfy the Navier-Stokes equations. Renormalizat
group theories for flow fields of this type have been deriv
by Forster, Nelson, and Stephen@14# and later by Yakhot
and co-workers@15–17#. We settle for the simplest descrip
tion of the fluid mechanics that captures the essence of
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bulent transport. Our results should not be sensitive to
assumption since the physical processes that appear to d
nate the long-time kinetics depend only on the overall tra
port properties of the fluid. In support of the generality of o
results, we note that Deering and West have used mean-
theory to analyze the reactionA1B→B in a time-
dependent, but spatially uncorrelated, model of isotropic
bulence. Where mean-field theory is expected to w
~where the renormalized reaction rate does not enter the
diction for the long-time reactant concentration! their results
agree with ours.

In this article we use a field-theoretic approach to anal
reaction kinetics in a model of turbulent fluid flow. A defi
nition of the fluid flow and the reaction kinetics is given
Sec. II. The reactive turbulence problem is mapped to a fi
theory that is convenient for analysis in Sec. III. The lon
time behavior of theA1A→B reaction is derived by a
renormalization group analysis in Sec. IV. The long-tim
behavior of theA1B→B reaction is derived in a simila
fashion in Sec. V. We conclude with a comparison to expe
mental results in Sec. VI.

II. DEFINITION OF REACTIVE TURBULENT FLOW

In our formulation, an isolated reactant undergoes bia
Brownian motion in the fluid streamlines, reacting at a giv
rate with other nearby reactants. In the absence of a reac
the motion of the particles can be described by a Lange
equation

dxi

dt
5bDF~xi !1h~ t !, ~1!

where the inverse temperature is given byb51/(kBT), and
D is the diffusivity. Here the position of particlei , xi , un-
dergoes advection due to forces from the fluid flow and d
fusion due to forces from the random, thermal motion of t
fluid. The random, thermal noise has a correlation de
mined by the diffusion coefficient

^hm~ t !hn~ t8!&52Ddmnd~ t2t8!. ~2!

We choose the forces coming from the fluid stream lines
that they mimic turbulence. Defining

^Fm~x!Fn~x8!&5Gmn~x2x8!, ~3!
3223 © 1998 The American Physical Society
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we choose

Ĝmn~k!5x̂ff~k!~dmnk22kmkn!1x̂uu~k!kmkn , ~4!

where the Fourier transform of the correlation function
Ĝmn(k)5*ddx Gmn(x)exp(ik•x) in d dimensions. Here
x̂ff(k) is the correlation function of the stream function th
gives rise to the turbulent fluid flow andx̂uu(k) is the cor-
relation function of a quenched, random potentialu(x),
which we have included for generality. To mimic turbulen
we choose

x̂ff~k!5
s

k21y
, x̂uu~k!5

g

k21y
. ~5!

Isotropic turbulence is modeled byy58/3 andg50.
Of course, we are interested in reactive, turbulent flo

We consider two different reactions

A1A→
l0

B ~6!

and

A1B→
l0

B. ~7!

Here l0 is the conventional reaction rate. We place our
actants on a square lattice, of lattice spacingh. This lattice
t

.

-

spacing implies a cutoff in Fourier space ofL52p/h. A
reaction occurs between two particles, at a ratel0 /h2, only
when they are on the same lattice site. The diffusion a
advection occur on this same lattice.

III. FIELD-THEORETIC REPRESENTATION

The quantity of interest is the long-time concentration
the reactants. The presence of the quenched fluid stream
and the quenched, external potential makes direct analys
the dynamics rather difficult. Perturbation theory fails due
singularities in the forces at smallk. We therefore map the
above description onto a field theory and analyze the fi
theory using renormalization-group theory. We assume
the concentration of reactants is initially Poisson, with av
age densityn0 .

A field theory is derived by identifying a master equatio
writing the master equation in terms of creation and ann
lation operators, and using the coherent state represent
@4,18#. The random potential is incorporated with the repli
trick @9#, usingN replicas of the original problem. For reac
tion ~6!, the concentration ofA at time t, averaged over the
initial conditions, is given by

cA~x,t !5 lim
N→0

^a~x,t !&, ~8!

where the average is taken with respect to exp(2SAA),
dom
SAA5E ddxE
0

t f
dtāa~x,t !@] t2D¹21d~ t !#aa~x,t !1

l0

2 E ddxE
0

t f
dt@2āa~x,t !aa

2~x,t !1āa
2~x,t !aa

2~x,t !#

2n0E ddx āa~x,0!2
b2D2

2 E dt1dt2E
k1k2k3k4

~2p!dd~k11k21k31k4!aC a1
~k1 ,t1!âa1

~k2 ,t1!aC a2
~k3 ,t2!âa2

~k4 ,t2!

3@k1•~k11k2!k3•~k31k4!x̂uu~ uk11k2u!1k13k2k33k4x̂ff~ uk11k2u!#. ~9!

Summation is implied over replica indices. The notation*k stands for*ddk/(2p)d. The upper time limit in the action is
arbitrary as long ast f>t. We do not dwell on the construction of this field theory. It differs from that for reaction in a ran
potential field only by the inclusion of the random streamline terms@6#.

For distinct reactants, i.e., for reaction~7!, a field theory can also be derived. The relevant action has the form

SAB5E ddxE
0

t f
dt āa~x,t !@] t2D¹21d~ t !#aa~x,t !1E ddxE

0

t f
dt b̄a~x,t !@] t2D¹21d~ t !#ba~x,t !

1l0E ddxE
0

t f
dt@ āa~x,t !aa~x,t !ba~x,t !1b̄a~x,t !aa~x,t !ba~x,t !1āa~x,t !aa~x,t !b̄a~x,t !ba~x,t !#

2n0E ddx@ āa~x,0!1b̄a~x,0!#2
b2D2

2 E dt1dt2E
k1k2k3k4

~2p!dd~k11k21k31k4!@aC a1
~k1 ,t1!âa1

~k2 ,t1!

2bC a1
~k1 ,t1!b̂a1

~k2 ,t1!#@aC a2
~k3 ,t2!âa2

~k4 ,t2!2bC a2
~k3 ,t2!b̂a2

~k4 ,t2!#@k1•~k11k2!k3•~k31k4!x̂uu~ uk11k2u!

1k13k2k33k4x̂ff~ uk11k2u!#. ~10!
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This action also differs from that for reaction in a rando
potential field only by the inclusion of the random strea
line terms@7#. The concentrations averaged over initial co
ditions are given by

cA~x,t !5 lim
N→0

^a~x,t !&, cB~x,t !5 lim
N→0

^b~x,t !&, ~11!

where the average on the right-hand side is taken with
spect to exp(2SAB). So as to reach the most interesting sc
ing limit, we have taken the initial average densities to be
same,cA(x,0)5cB(x,0)5n0 . For simplicity, we have also
assumed equal diffusivities of the two species,DA5DB
5D. Note that theA andB particles experience an identic
force due to the fluid streamlines but an opposite force du
the quenched, external potential.

IV. THE A1A˜B REACTION

Let us first consider how turbulence will affect theA
1A→B reaction in the absence of potential disorder. Wi
out turbulent mixing, this reaction is diffusion limited. Th
concentration decays at long times ascA(t)
; ln(t/t0)/(8pDt), with t0'h2/D @4#. This decay is slower
than thecA(t);1/(k* t) that would be predicted by simpl
mean-field kinetics for a well-mixed reaction with effectiv
reaction ratek* . Turbulence mixes the reactants, tending
eliminate the transport limitation on the reaction rate. As
will see, turbulence will cause the reactant concentration
follow the mean-field result, withk* <l0 .

We analyze the field theory~9! via renormalization-group
theory. The flow equations in two dimensions, to one lo
order, are

dlnn0

dl
52,

dlnl

dl
52

l

4pD
2g,

dlng

dl
5y22g,

~12!

where the dimensionless coupling constant is given byg
5sb2L2y/(4p). The dynamical exponent is given by

z522g. ~13!

We see that the flow equations lead to a nonzero fixed p
for the couplingg* 5y/2. This fixed point is probably exac
if we assume that the reaction does not affect the trans
properties@6,10#.

We determine the long-time decay from the flow equ
tions via matching to short-time perturbation theory@6#. The
flow equations are integrated to a time such thatt( l * )

5texp@2*0
l*z(l)dl#5t0. At short times, we find the mean

square displacement of an unreactive particle fr
^r 2(t( l * ),l * )&54Dt( l * ) and the concentration of reactan
from cA„t( l * ),l * …51/@1/n0( l * )1l( l * )t( l * )#. The long-
time asymptotic values are given by scalinĝr 2(t)&
5e2l* ^r 2

„t( l * ),l * …& and cA(t)5e22l* cA„t( l * ),l * …. This
procedure gives

cA~ t !;S 1

2pDy
1

1

l0
D1

t
~g50!, ~14!
-
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where we recognize the mean-field result with effective
action rate 1/k* 51/(2pDy)11/l0 . The mean-square dis
placement is given bŷr 2(t)&;4Dt(t/t0)y/(42y), which is
an exact law@10# in the absence of a reaction. As expecte
turbulence leads to the well-mixed, mean-field result for
concentration decay, with an effective reaction ratek*
,l0 . We have determined the effective reaction rate as
expansion in the parametery, which measures the degree
mixing of the fluid. For simplicity here and below, we hav
used only the fixed point value ofg when integrating the
flow equation forl( l ).

What will happen in the presence of a quenched, rand
potential? We have seen that fluid streamlines increase
mixing of the reactants. We have previously shown tha
quenched, random potential in the absence of turbule
leads to a slowing down of the reaction@6#. This occurs
because the reaction becomes diffusion limited at long tim
and the random potential leads to subdiffusion. We mig
therefore, expect that the reactant concentration forgÞ0
will be lower than that for the case ofg50 for arbitrarys.
In fact, a subtle trapping effect due to the potential leads
increased decay rates, above that forg50, for some inter-
mediate values ofg.

The flow equations that result in the presence of the r
dom potential are

dlnn0

dl
52,

dlnl

dl
52

l

4pD
13gg2gs ,

dlngg

dl
5y22gs ,

dlngs

dl
5y22gs , ~15!

where the dimensionless coupling constants are given
gg5gb2L2y/(4p) andgs5sb2L2y/(4p). The dynamical
exponent is given by

z521gg2gs . ~16!

These flow equations lead to fixed points for the couplin
gs* 5y/2 andgg* 5(g/s)y/2. The flow diagram for the cou
plings is shown in Fig. 1. Including higher-order diagrams
the flow equation leads to a bending of the fixed line, mo
strongly for largerg/s, with the coupling flows remaining
linear @19#.

The matching to determine the asymptotic concentrati
leads to two regimes. For weak potential disorder withg
,s, there is no finite fixed point value forl( l ), and we
have

cA~ t !;F 1

4pD~gs* 23gg* !
1

1

l0
G1

t S t

t0
D 22gg* /~21gg* 2gs* !

~3g,s!. ~17!

For strong potential disorder with 3g.s, there is a finite
fixed point valuel* 54pD(3gg* 2gs* ), and we have

cA~ t !;
1

l* t
S t

t0
D ~gg* 2gs* !/~21gg* 2gs* !

~3g.s!. ~18!
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The maximum rate of decay occurs for 3g5s, in which
case we have

cA~ t !;
ln~ t/t0!

8p~12y/6!Dt
t2y/~62y! ~3g5s!. ~19!

In all cases, the mean-square displacement is given

^r 2(t)&;4Dt(t/t0)(gs* 2gg* )/(22gs* 1gg* ).
Examining the asymptotic decay laws~17!–~19!, we see

that a small amount of potential disorder added to the tur
lent fluid mixing leads to anincreasedrate of reaction. As
the potential disorder is increased, eventually the rate of
action decreases. The exponent of the concentration dec
shown in Fig. 2. This result is rigorously valid for smally
and finite values ofg and s. For finite values ofy, we
expect qualitatively similar behavior.

How can potential disorder, which tends to slow down t
diffusing reactants, lead to an increased rate of reaction?
potential disorder creates regions of low energy, which te
to attract reactants. The local density of reactants in th

FIG. 1. Flow diagram for the dimensionless couplings in t
A1A→B reaction. The fixed line is shown in bold fory51. The
fixed point reaction rate is finite on the solid part of the fixed li
and vanishes on the dashed part of the fixed line.

FIG. 2. Decay exponent for theA1A→B reaction: cA(t)
;const3t2a. The figure is shown fory58/3, which mimics iso-
tropic turbulence.
by
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deep energy wells is significantly higher than the avera
density. The reaction rate in these regions is, therefo
higher than would be predicted by mean-field theory ba
upon the average density. The turbulent mixing flows co
tinuously replenish the reactants in these wells as the r
tion occurs. In this way, a reaction rate significantly high
than that for a perfectly well-mixed system arises.

V. THE A1B˜B REACTION

We now turn to theA1B→B reaction. In this case, theA
andB reactants are attracted to different regions of space
the external potential, and so there is no mechanism for
perfast reaction.

The flow equations for this case are

dlnn0

dl
52,

dlnl

dl
52

l

4pD
2~gg1gs!,

dlngg

dl
5y22gs ,

dlngs

dl
5y22gs . ~20!

The dynamical exponent is given by

z521gg2gs . ~21!

We first consider the case of no external potential. If,
addition, there is no turbulent flow, theA and B reactants
segregate into distinct regions in space. This segrega
leads to a severely diffusion-limited reaction at long time
The concentration decays as cA(t)5cB(t)
;@n0/(8p2Dt)#1/2 @7#. Allowing for turbulent mixing, we
expect the reaction to become more well mixed, with le
segregation and faster reaction. In fact, there will be a tr
sition to a region that is reaction limited for strong enou
mixing flows.

We perform the matching to determine the asympto
decay. In the transport-limited regime, we usecA„t( l * ),l * …
5@n0( l * )/(8p2Dt( l * ))#1/2. In the reaction-limited regime
we usecA„t( l * ),l * …51/@1/n0( l * )1l( l * )t( l * )#, as before.

For weak fluid mixing the reaction will be in the
transport-limited regime, whereas for strong fluid mixing t
reaction will be in the reaction-limited regime. Specificall
for weak mixing we have

cA~ t !;S n0

8p2Dt
D 1/2S t

t0
D 2y/~822y!

~y,2,g50!.

~22!

For strong mixing, we have

cA~ t !;S 1

2pDy
1

1

l0
D1

t
~y.2,g50!. ~23!

The exponent of this decay is shown in Fig. 3. Note that
isotropic turbulence (y58/3), the reaction is always in th
reaction-limited regime in two dimensions.

Potential disorder will slow down the reaction both b
cause reactants are attracted to different regions of space
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because the transport of reactants to each other is slo
Our one-loop flow equations predict that in the transpo
limited regime

cA~ t !;S n0

8p2Dt
D 1/2S t

t0
D ~gg* 2gs* !/~422gs* 12gg* !

~gs* 1gg* ,1!,

~24!

where, as before, we havegs* 5y/2 and gg* 5(g/s)y/2. In
the reaction-limited regime we have

cA~ t !;F 1

4pD~gs* 1gg* !
1

1

l0
G1

t S t

t0
D 2gg* /~22gs* 1gg* !

~1,gs* 1gg* ,2!. ~25!

The exponent of this decay is shown in Fig. 4. The expon
is valid for arbitraryy and smallg/s. The effective reaction
rate in Eq.~25!, however, may contain corrections high
order iny.

VI. CONCLUSION

Experiments to test our predictions for isotropic turb
lence, Eqs.~14! and~23!, would be relatively simple to per
form. The behavior of the prefactor would be the quantity

FIG. 3. Decay exponent for theA1B→B reaction: cA(t)
;const3t2a. The figure is shown forg50.
J.
ed.
-

nt

-

f

interest. Reaction conditions of the type that we consi
could be realized in reactions between ionic species confi
to two-dimensional fluid films that are surrounded by sp
tially addressable electrodes or media with ionic disor
that is not equilibrated. The electrodes or disordered me
are necessary to generate a potential with the required,
gular correlation function. The required isotropic turbulen
can be generated in the standard fashion. Fluid flows
strong than isotropic turbulence (y,8/3) could be observed
in regions of developing turbulence.

A recent experiment by Paireau and Tabeling has see
enhancement of the effective reaction rate between ions
chaotically mixed, two-dimensional fluid with attracto
@20#. In this experiment only the prefactor to the reactivi
was enhanced. The decay exponent remained at unity
cause the disorder was technically irrelevant. We are
aware of experiments, to date, that can test our predict
for technically relevant disorder, Eqs.~17!–~19!, ~24!, and
~25!.
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FIG. 4. Decay exponent for theA1B→B reaction: cA(t)
;const3t2a. The figure is shown fory51.2. The reaction is trans
port limited on the solid curve and reaction limited on the dash
curve. The curve is strictly valid only for smallg/s.
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